Faster subgradient methods for functions with Hölderian growth
نویسندگان
چکیده
منابع مشابه
Faster Subgradient Methods for Functions with Hölderian Growth
The purpose of this manuscript is to derive new convergence results for several subgradient methods for minimizing nonsmooth convex functions with Hölderian growth. The growth condition is satisfied in many applications and includes functions with quadratic growth and functions with weakly sharp minima as special cases. To this end there are four main contributions. First, for a constant and su...
متن کاملSubgradient Methods
3 Convergence proof 4 3.1 Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 3.2 Some basic inequalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 3.3 A bound on the suboptimality bound . . . . . . . . . . . . . . . . . . . . . . 7 3.4 A stopping criterion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 3.5 Numerical examp...
متن کاملSubgradient methods for convex minimization
Many optimization problems arising in various applications require minimization of an objective cost function that is convex but not di erentiable. Such a minimization arises, for example, in model construction, system identi cation, neural networks, pattern classi cation, and various assignment, scheduling, and allocation problems. To solve convex but not di erentiable problems, we have to emp...
متن کاملStochastic Subgradient Methods
Stochastic subgradient methods play an important role in machine learning. We introduced the concepts of subgradient methods and stochastic subgradient methods in this project, discussed their convergence conditions as well as the strong and weak points against their competitors. We demonstrated the application of (stochastic) subgradient methods to machine learning with a running example of tr...
متن کاملDynamic Subgradient Methods
Lagrangian relaxation is commonly used to generate bounds for mixed-integer linear programming problems. However, when the number of dualized constraints is very large (exponential in the dimension of the primal problem), explicit dualization is no longer possible. In order to reduce the dual dimension, different heuristics were proposed. They involve a separation procedure to dynamically selec...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematical Programming
سال: 2019
ISSN: 0025-5610,1436-4646
DOI: 10.1007/s10107-018-01361-0